Module 3 Network Security

Submodule 1: Networking Basics

Computer Networks

- A computer network consists of two or more computing devices that are connected in order to share the components of your network (its resources) and the information stored.
- The communication between devices is enabled by various networking devices:
 - Router
 - Hub
 - Bridge
 - Switch

Network Topology

• Network topology defines what layout pattern is used for the devices to be interconnected.

Packet Switching

- Used for the Internet
- Data is split into packets
- Packets are transmitted independently through the network
- Each packet is handled with best effort
- Packets (from the same piece of data) may travel different routes

Inside the Packet

- Each packet is a finite-length set of bits.
- A packet typically consists of:
 - A header: specifies where the packet is going and contains various overhead and bookkeeping details.
 - A payload: the actual information that is to be transmitted.

Header	Sender's IP address Receiver's IP address Protocol Packet number	96 bits
Payload	Data	896 bits
Trailer	Data to show end of packet Error correction	32 bits

Packet - E-mail Example

©2000 How Stuff Works

Network Protocols

- A protocol defines the rules for communication between computers.
- Protocols can be broadly classified as:
 - Connectionless protocol
 - Sends data out as soon as there is enough data to be transmitted
 - E.g., user datagram protocol (UDP)
 - Connection-oriented protocol
 - Provides a reliable connection stream between two nodes
 - Consists of set up, transmission, and tear down phases
 - Creates virtual circuit-switched network
 - E.g., transmission control protocol (TCP)

Encapsulation

- The Internet is supported by many different protocols.
 - These protocols need to use services from other protocols.
- Suppose that a network protocol N1 uses services of another network protocol N2:
 - A packet p1 of N1 is encapsulated into a packet p2 of N2
 - The payload of p2 is p1
 - The control information of p2 is derived from that of p1

Internet Protocol Stack-I

- The architecture of the Internet is modeled conceptually as being partitioned into layers, which collectively are called the Internet protocol stack.
 - Each layer provides a set of services and functionality guarantees for higher layers.
 - Higher layers use the services of lower layers via encapsulation.
 - A layer can be implemented in hardware or software
 - The bottommost layer must be in hardware.

Internet Protocol Stack-II

- A network device may implement several layers
- A communication channel between two nodes is established for each layer
 - Actual channel at the bottom layer
 - Virtual channel at higher layers
- The exact number and names of the layers of the Internet protocols vary, depends on the source of your model.

The OSI Model

- The OSI (Open System Interconnect) Reference Model is a network model consisting of seven layers
- Created in 1983, OSI is promoted by the International Standard Organization (ISO)

Internet Protocol Layers-I

- Here we use five layers as follows:
 - Physical layer
 - Link layer
 - Network layer
 - Transport layer
 - Application layer
- Physical layer:
 - Move the actual bits between nodes
 - Connection is created using various media: copper wires, coaxial cables, optical-fiber cables, or wireless radio

Internet Protocol Layers-II

- Link layer
 - Transfer data between pair of nodes and detect errors occur at the physical layer
 - Uses 48-bit media access control (MAC) addresses
 - Packets called frames—ordered records of bits
- Network layer
 - Also known as the Internet layer, moves packets between two hosts. Internet-wide communication
 - Best efforts—no guarantee of delivery
 - Main protocol used in this layer is Internet Protocol (IP)
 - Use IP address to address each host:
 - 32-bit internet protocol (IP) addresses in IPv4
 - 128-bit IP addresses in IPv6

Internet Protocol Layers-III

- Transport layer
 - Support communication and connections between applications, based on IP addresses and ports.
 - Port is a 16-bit addresses for application-level protocols to use
 - Connection-oriented transmission layer protocol (TCP transmission control protocol)
 - Connectionless user datagram protocol (UDP—user datagram protocol)
- Application layer
 - Provide protocols to support useful functions on the Internet.
 - HTTP, SMTP, IMAP, SSL—use TCP
 - DNS, VoIP-use UDP

Physical Layer

Internet Packet Encapsulation

